Sains Malaysiana 53(10)(2024): 3465-3477
            
          
          http://doi.org/10.17576/jsm-2024-5310-19
            
          
          
             
          
          A lncRNA Transcriptome Analysis of
            Phycocyanin-Treated Non-Small Cell Lung Cancer A549 Cell Lines
            
          
          (Analisis Transkriptom lncRNA bagi Titisan Sel A549 Bukan Sel Kecil Kanser
            Paru-Paru yang Dirawat Fikosianin)
  
          
          
             
          
          BOXIONG
            WU, HAOZHE CHENG, XINRAN LI, WENJING ZHANG, QIANCHENG LI & SHUAI HAO*
  
          
             
          
          Key
            Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business
            University), Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and
            Business University, Beijing, 100048, China
  
          
          
             
          
          Received: 16
            April 2024/Accepted: 14 August 2024
            
          
          
             
          
          Abstract
            
          
          Phycocyanin is a type
            of marine food additive with multiple biological properties, including anticancer activity, but
              its underlying antineoplastic mechanism in non-small cell lung cancer (NSCLC)
              remains unclear. To investigate the underlying regulatory mechanism of
              phycocyanin in NSCLC, a lncRNA microarray analysis was performed using a phycocyanin-treated
                A549 cell model. The classification and expression of lncRNAs were determined. The profiles of differentially expressed lncRNAs were generated and analyzed using Kyoto Encyclopedia of Genes and Genomes
                (KEGG) and Gene Ontology (GO) analyses. The results showed that 193 lncRNAs were upregulated and 116 lncRNAs were downregulated in the phycocyanin-treated group compared with the control group, and qRT‒PCR analysis confirmed the expression of selected lncRNAs. Bioinformatic analysis indicated that the
                  differentially expressed lncRNAs and their target
                  genes were enriched in the extracellular region, epithelium development, NOD-like receptor pathway, Notch
                    signaling, and apoptosis process. In addition, coexpression network analysis identified 2,238
                      lncRNA‒mRNA, lncRNA‒lncRNA, and mRNA‒mRNA pairs. In particular, 72 etc. differentially expressed lncRNA target genes were discovered in the
                        interaction network, which provides insights into the potential mechanism of
                        phycocyanin in A549 cells. Moreover, cell phenotype experiments showed that
                        downregulating the expression of lncRNA ENST00000538717, a lncRNA that is
                        downregulated after phycocyanin treatment, could significantly inhibit the
                        migration and viability of A549 and H460 cells. In conclusion, this study lays
                        a theoretical and potential foundation for NSCLC treatment and advances our
                        understanding of the regulatory mechanisms of phycocyanin.
  
          
             
          
          Keywords: A549 cells; anticancer;
            lncRNA; non-small cell lung cancer (NSCLC); phycocyanin
            
          
          
             
          
          Abstrak
            
          
          Fikosianin ialah sejenis bahan tambahan makanan laut dengan pelbagai sifat biologi, termasuk aktiviti antikanser, tetapi mekanisme antineoplastik asasnya dalam kanser paru-paru bukan-sel kecil (NSCLC) masih tidak jelas. Untuk mengkaji mekanisme pengawalseliaan asas fikosianin dalam NSCLC, analisis tatasusunan mikro lncRNA dilakukan menggunakan model sel A549 yang dirawat fikosianin. Pengelasan dan pengekspresan lncRNA telah ditentukan. Profil lncRNA yang dinyatakan secara berbeza dijana dan dianalisis menggunakan analisis Kyoto
            Encyclopedia of Genes and Genom (KEGG) dan Gene
              Ontology (GO). Keputusan menunjukkan bahawa 193 lncRNA telah dikawal dan 116 lncRNA telah dikurangkan dalam kumpulan yang dirawat fikosianin berbanding dengan kumpulan kawalan dan analisis qRT‒PCR mengesahkan ekspresi lncRNA terpilih. Analisis bioinformatik menunjukkan bahawa lncRNA yang dinyatakan secara berbeza dan gen sasarannya diperkaya di kawasan ekstrasel, pembangunan epitelium, laluan reseptor seperti NOD, isyarat Notch dan proses apoptosis. Di samping itu, analisis rangkaian ekspresi bersama mengenal pasti 2,238 pasangan lncRNA‒mRNA, lncRNA‒lncRNA dan mRNA‒mRNA. Khususnya,
            72 dsb. gen sasaran lncRNA
            yang dinyatakan secara berbeza ditemui dalam rangkaian interaksi yang memberikan gambaran tentang mekanisme potensi fikosianin dalam sel A549. Selain itu, kajian fenotip sel menunjukkan bahawa perencatan pengawalaturan ekspresi lncRNA
            ENST00000538717, lncRNA yang mengalami perencatan pengawalaturan selepas rawatan fikosianin, boleh menghalang penghijrahan dan keviabelan sel A549 dan H460 dengan ketara. Kesimpulannya, kajian ini meletakkan asas teori dan potensi rawatan NSCLC dan meningkatkan pemahaman kita tentang mekanisme pengawalseliaan oleh fikosianin.
  
          
          
             
          
          Kata kunci: Antikanser; fikosianin; lncRNA; kanser paru-paru bukan-sel kecil (NSCLC); sel A549
            
          
          
             
          
          REFERENCES
            
          
          Alzokaky, A.A.M., Abdelkader, E.M., El-Dessouki, A.M., Khaleel, S.A. & Raslan, N.A. 2020.
            C-phycocyanin protects against ethanol-induced gastric ulcers in rats: Role of
            HMGB1/NLRP3/NF-kappa B pathway. Basic
  & Clinical Pharmacology & Toxicology 127(4): 265-277.
            https://doi.org/10.1111/bcpt.13415
  
          
          Bridges, M.C., Daulagala, A.C. &
            Kourtidis, A. 2021. LNCcation: lncRNA localization
            and function. Journal of Cell Biology 220(2): e202009045. https://doi.org/10.1083/jcb.202009045
  
          
          Cai, G., Sun, M., Li, X. & Zhu, J. 2021. Construction and
            characterization of rectal cancer-related lncRNA-mRNA ceRNA network reveals prognostic biomarkers in rectal cancer. Iet Systems Biology 15(6): 192-204.
            https://doi.org/10.1049/syb2.12035
  
          
          Chen, L., Zou, W., Zhang, L., Shi, H., Li, Z. & Ni, C. 2021. ceRNA network development and tumor-infiltrating immune
            cell analysis in hepatocellular carcinoma. Medical
              Oncology 38(7): 85. https://doi.org/10.1007/s12032-021-01534-6
  
          
          Corley, S.M., Troy, N.M., Bosco, A. & Wilkins, M.R. 2019. QuantSeq. 3' sequencing combined with Salmon provides a
            fast, reliable approach for high throughput RNA expression analysis. Sci.
              Rep. 9(1): 18895. https://doi.org/10.1038/s41598-019-55434-x
  
          
          Ettinger, D.S., Wood, D.E., Akerley, W., Bazhenova, L.A., Borghaei, H., Camidge, D.R., Cheney, R.T., Chirieac, L.R., D'Amico, T.A., Dilling, T.J., Dobelbower,
            M.C., Govindan, R., Hennon, M., Horn, L., Jahan, T.M., Komaki, R., Lackner,
            R.P., Lanuti, M., Lilenbaum,
            R., Lin, J., Loo Jr., B.W., Martins, R., Otterson, G.A., Patel, J.D., Pisters,
            K.M., Reckamp, K., Riely, G.J., Schild, S.E., Shapiro, T.A., Sharma, N.,
            Stevenson, J., Swanson, S.J., Tauer, K., Yang, S.C., Gregory, K. & Hughes,
            M. 2016. NCCN Guidelines (R) Insights: Non-small cell lung cancer, Version
            4.2016 featured updates to the NCCN guidelines. Journal of the National Comprehensive Cancer Network 14(3):
            255-264. https://doi.org/10.6004/jnccn.2016.0031
  
          
          Guo, K., Qian, K., Shi, Y., Sun, T. & Wang, Z. 2021. LncRNA-MIAT
            promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell
              Death & Disease 12: 1097. https://doi.org/10.1038/s41419-021-04386-0
  
          
          Guo, T., Li, J., Zhang, L., Hou, W., Wang, R., Zhang, J. & Gao, P.
            2019. Multidimensional communication of microRNAs and long non-coding RNAs in
            lung cancer. Journal of Cancer Research
              and Clinical Oncology 145(1): 31-48.
            https://doi.org/10.1007/s00432-018-2767-5
  
          
          Hao, S., Li, F., Li, S., Li, Q., Liu, Y., Yang, Q., Ye, X. & Wang,
            C. 2022. miR-3150a-3p, miR-6883-3p and miR-627-5p participate in the
            phycocyanin-mediated growth diminishment of A549 cells, via regulating a common
            target toll/interleukin 1 receptor domain-containing adaptor protein. Journal of Functional Foods 91: 105011.
            https://doi.org/10.1016/j.jff.2022.105011
  
          
          Hao, S., Yang, Q., Li, F., Li, Q., Liu, Y., Li, S., Zhao, L. & Wang,
            C. 2021. Dysregulated expression of miR-642a-5p and its target
            receptor-interacting serine/threonine-protein kinase 1 contribute to the phycocyanin-mediated inhibitory function on non-small cell lung cancer. Journal of Functional Foods 85: 104654.
            https://doi.org/10.1016/j.jff.2021.104654
  
          
          Hao, S., Li, S., Wang, J., Zhao, L., Yan, Y., Cao, Q., Wu, T.T., Liu,
            L.Y. & Wang, C.T. 2018. Transcriptome analysis of phycocyanin-mediated
            inhibitory functions on non-small cell lung cancer A549 cell growth. Marine Drugs 16(12): 511.
            https://doi.org/10.3390/md16120511
  
          
          Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. &
            Salzberg, S-L. 2013. TopHat2: Accurate alignment of transcriptomes in the
            presence of insertions, deletions and gene fusions. Genome Biol. 14(4):
            R36. http://genomebiology.com/2013/14/4/R36
  
          
          Huang, J.W., Luo, X.Y., Li, Z.H. & Lang, B.P. 2020. LncRNA NNT-AS1
            regulates the progression of lung cancer through the NNT-AS1/miR-3666/E2F2
            axis. European Review for Medical and
              Pharmacological Sciences 24(1): 238-248.
            https://doi.org/10.26355/eurrev_202001_19916
  
          
          Khandelwal, A., Bacolla, A., Vasquez, K.M.
  & Jain, A. 2015. Long non-coding RNA: A new paradigm for lung cancer. Molecular Carcinogenesis 54(11):
            1235-1251. https://doi.org/10.1002/mc.22362
  
          
          Li, B., Gao, M-H., Chu, X-M., Teng, L., Lv,
            C-Y., Yang, P. & Yin, Q-F. 2015. The synergistic antitumor effects of
            all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in
              vitro and in vivo. European
                Journal of Pharmacology 749: 107-114.
            https://doi.org/10.1016/j.ejphar.2015.01.009
  
          
          Li, B., Gao, M-H., Lv, C-Y., Yang, P. &
            Yin, Q-F. 2016. Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells. European Journal of Cancer Prevention 25(2): 97-101. https://doi.org/10.1097/cej.0000000000000157
  
          
          Liu, Q., Huang, Y., Zhang, R., Cai, T. & Cai, Y. 2016. Medical application of Spirulina platensis derived
            C-phycocyanin. Evidence-Based
              Complementary and Alternative Medicine 2016: 7803846.
            https://doi.org/10.1155/2016/7803846
  
          
          Loewen, G., Jayawickramarajah, J., Zhuo, Y.
  & Shan, B. 2014. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology 7:
            90. https://doi.org/10.1186/s13045-014-0090-4
  
          
          Luo, D.B., Lv, H.B., Sun, X.H., Wang, Y., Chu,
            J.H. & Salai, A.L. 2020. LncRNA TRERNA1 promotes malignant progression of
            NSCLC through targeting FOXL1. European
              Review for Medical and Pharmacological Sciences 24(3): 1233-1242.
            https://doi.org/10.26355/eurrev_202002_20176
  
          
          Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. 2017. The different
            mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin 7(3): 339-348.
            https://doi.org/10.15171/apb.2017.041
  
          
          Marcela Herrera-Solorio, A., Peralta-Arrieta, I., Armas Lopez, L.,
            Hernandez-Cigala, N., Mendoza Milla, C., Ortiz Quintero, B., Catalan Cardenas,
            R., Pineda Villegas, P., Rodriguez Villanueva, E., Trejo Iriarte, C.G., Zuniga,
            J., Arrieta, O. & Avila-Moreno, F. 2021. LncRNA SOX2-OT regulates AKT/ERK
            and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in
            malignant lung diseases. Molecular
              Oncology 15(4): 1110-1129. https://doi.org/10.1002/1878-0261.12875
  
          
          Molina, J.R., Yang, P.G., Cassivi, S.D.,
            Schild, S.E. & Adjei, A.A. 2008. Non-small cell lung cancer: Epidemiology,
            risk factors, treatment, and survivorship. Mayo
              Clinic Proceedings 83(5): 584-594. https://doi.org/10.4065/83.5.584
  
          
          Morgenstern, D., Barzilay, R. & Levin, Y. 2021. RawBeans:
            A simple, vendor-independent, raw-data quality-control tool. J. Proteome
              Res. 20(4): 2098-2104. https://dx.doi.org/10.1021/acs.jproteome.0c00956
  
          
          Nian, Y., Hu, X., Zhang, R., Feng, J., Du, J., Li, F., Bu, L., Zhang,
            Y., Chen, Y. & Tao, C. 2022. Mining on Alzheimer's diseases related
            knowledge graph to identity potential AD-related semantic triples for drug
            repurposing. BMC Bioinformatics 23(Suppl 6): 407.
            https://doi.org/10.1186/s12859-022-04934-1
  
          
          Novikova, I.V., Hennelly, S.P. & Sanbonmatsu,
            K.Y. 2013. Tackling structures of long noncoding RNAs. International Journal of Molecular Sciences 14(12): 23672-23684.
            https://doi.org/10.3390/ijms141223672
  
          
          Qi, X., Zhang, D-H., Wu, N., Xiao, J-H., Wang, X. & Ma, W. 2015. ceRNA in cancer: Possible functions and clinical
            implications. Journal of Medical Genetics 52(10): 710-718. https://doi.org/10.1136/jmedgenet-2015-103334
  
          
          Ransohoff, J.D., Wei, Y. & Khavari, P.A. 2018. The
            functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology 19(3): 143-157. https://doi.org/10.1038/nrm.2017.104
  
          
          Ren, C., Deng, M., Fan, Y., Yang, H., Zhang, G., Feng, X., Li, F., Wang,
            D., Wang, F. & Zhang, Y. 2017. Genome-wide analysis reveals extensive
            changes in LncRNAs during skeletal muscle development
            in Hu sheep. Genes 8(8): 191.
            https://doi.org/10.3390/genes8080191
  
          
          Rezansoff, A.M., Laing, R., Martinelli, A., Stasiuk,
            S., Redman, E., Bartley, D., Holroyd, N., Devaney, E., Sargison, N.D., Doyle,
            S., Cotton, J.A. & Gilleard, J.S. 2019. The
            confounding effects of high genetic diversity on the determination and
            interpretation of differential gene expression analysis in the parasitic
            nematode Haemonchus contortus. Int. J. Parasitol. 49(11): 847-858.
            https://doi.org/10.1016/j.ijpara.2019.05.012
  
          
          Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram,
            I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN
            estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3): 209-249. https://doi.org/10.3322/caac.21660
  
          
          Taneja, S.B., Callahan, T.J., Paine, M.F., Kane-Gill, S.L., Kilicoglu, H., Joachimiak, M.P.
  & Boyce, R.D. 2023. Developing a knowledge graph for pharmacokinetic
            natural product-drug interactions. J. Biomed. Inform. 140: 104341. https://doi:
              10.1016/j.jbi.2023.104341
  
          Tuo, Z., Liang, L. & Zhou, R. 2021. LINC00852 is associated with
            poor prognosis in non-small cell lung cancer patients and its inhibition
            suppresses cancer cell proliferation and chemoresistance via the
            hsa-miR-145-5p/KLF4 axis. Journal of Gene
              Medicine 23(12): e3384. https://doi.org/10.1002/jgm.3384
  
          
          Wan, Y., Yao, D., Fang, F., Wang, Y., Wu, G. & Qian, Y. 2021. LncRNA
            WT1-AS downregulates lncRNA UCA1 to suppress non-small cell lung cancer and
            predicts poor survival. BMC Cancer 21(1): 104. https://doi.org/10.1186/s12885-020-07767-4
  
          
          Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. 2020. Integrated
            analysis of lncRNA-mediated ceRNA network in lung
            adenocarcinoma. Frontiers in Oncology 10: 554759. https://doi.org/10.3389/fonc.2020.554759
  
          
          Yi, S., Li, G. & Sun, B. 2021. Overexpression of LINC00852 promotes
            prostate cancer cell proliferation and metastasis. Asia-Pacific Journal of Clinical Oncology 17(6): 435-441.
            https://doi.org/10.1111/ajco.13418
  
          
          Zhang, G., Wang, Q., Zhang, X., Ding, Z. & Liu, R. 2019. LncRNA
            FENDRR suppresses the progression of NSCLC via regulating miR-761/TIMP2 axis. Biomedicine & Pharmacotherapy 118:
            109309. https://doi.org/10.1016/j.biopha.2019.109309
  
          
          Zhang, X., Chen, Z., Zang, J., Yao, C., Shi, J., Nie, R. & Wu, G.
            2021. LncRNA-mRNA co-expression analysis discovered the
              diagnostic and prognostic biomarkers and potential therapeutic agents
            for myocardial infarction. Aging-Us 13(6): 8944-8959.
  
          
          Zhang, Y.X., Yuan, J., Gao, Z.M. & Zhang, Z.G. 2018. LncRNA TUC338
            promotes invasion of lung cancer by activating MAPK pathway. European Review for Medical and
              Pharmacological Sciences 22(2): 443-449.
  
          
          Zhao, L., Zhang, X., Shi, Y. & Teng, T. 2020. LncRNA SNHG14
            contributes to the progression of NSCLC through miR-206/G6PD pathway. Thoracic Cancer 11(5): 1202-1210.
            https://doi.org/10.1111/1759-7714.13374
  
          
          Zhen, Q., Gao, L-N., Wang, R-F., Chu, W-W., Zhang, Y-X., Zhao, X-J., Lv, B-L. & Liu, J-B. 2018. LncRNA DANCR promotes lung
            cancer by sequestering miR-216a. Cancer
              Control 25(1): 1073274818769849. https://doi.org/10.1177/1073274818769849
  
          
          
             
          
          
          *Corresponding author;
            email: haoshuai@btbu.edu.cn